Function of a function

If y is a function of x then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
This is known as the 'function of a function' rule (or sometimes the chain rule).
For example, if $y=(3 x-1)^{9}$ then, by making the substitution $u=(3 x-1), y=u^{9}$, which is of the 'standard' form.
Hence $\frac{d y}{d u}=9 u^{8}$ and $\frac{d u}{d x}=3$
Then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(9 u^{8}\right)(3)=27 u^{8}$
Rewriting u as $(3 x-1)$ gives: $\frac{d y}{d x}=27(3 x-1)^{8}$

EXAMPLE 1 Differentiate $\quad y=3 \cos \left(5 x^{2}+2\right)$

Let $u=5 x^{2}+2$ then $y=3 \cos u$
Hence $\frac{d u}{d x}=10 x$ and $\frac{d y}{d u}=-3 \sin u$
Using the function of a function rule,
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=(-3 \sin u)(10 x)=-30 x \sin u$

Rewriting u as $5 x^{2}+2$ gives:

$$
\frac{d y}{d x}=-30 x \sin \left(5 x^{2}+2\right)
$$

EXAMPLE 2 Find the derivative of $y=\left(4 t^{3}-3 t\right)^{6}$
SOLUTION

Let $u=4 t^{3}-3 t$, then $y=u^{6}$
Hence $\frac{d u}{d t}=12 t^{2}-3$ and $\frac{d y}{d t}=6 u^{5}$
Using the function of a function rule,

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(6 u^{5}\right)\left(12 t^{2}-3\right)
$$

Rewriting u as $\left(4 t^{3}-3 t\right)$ gives:

$$
\begin{aligned}
\frac{d y}{d t} & =6\left(4 t^{3}-3 t\right)^{5}\left(12 t^{2}-3\right) \\
& =\mathbf{1 8}\left(4 t^{2}-1\right)\left(4 t^{3}-3 t\right)^{5}
\end{aligned}
$$

EXAMPLE 2 Differentiate $\bar{y}=\sqrt{3 x^{2}+4 x-1}$
SOLUTION
$y=\sqrt{3 x^{2}+4 x-1}=\left(3 x^{2}+4 x-1\right)^{1 / 2}$
Let $u=3 x^{2}+4 x-1$ then $y=u^{1 / 2}$
Hence $\frac{d u}{d x}=6 x+4$ and $\frac{d y}{d u}=\frac{1}{2} u^{-1 / 2}=\frac{1}{2 \sqrt{u}}$
Using the function of a function rule,

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=\left(\frac{1}{2 \sqrt{u}}\right)(6 x+4)=\frac{3 x+2}{\sqrt{u}}
$$

$$
\text { i.e. } \frac{d y}{d x}=\frac{3 x+2}{\sqrt{3 x^{2}+4 x-1}}
$$

EXAMPLE 3 Differentiate

$y=\frac{2}{\left(2 t^{3}-5\right)^{4}}$

SOLUTION

then $y=2 u^{-4}$
Hence $\frac{d u}{d t}=6 t^{2}$ and $\frac{d y}{d u}=-8 u^{-5}=\frac{-8}{u^{5}}$
Then $\frac{d y}{d t}=\frac{d y}{d u} \times \frac{d u}{d t}=\left(\frac{-8}{u^{5}}\right)\left(6 t^{2}\right)=\frac{-48 t^{2}}{\left(2 t^{3}-5\right)^{5}}$
CLASS WORK Find the differential coefficients with respect to the variables

1. $\left(2 x^{3}-5 x\right)^{5} \quad\left[5\left(6 x^{2}-5\right)\left(2 x^{3}-5 x\right)^{4}\right]$
2. $2 \sin (3 \theta-2) \quad[6 \cos (3 \theta-2)]$

ASSIGNMENT Differentiate the variables

$$
\begin{array}{lr}
2 \cot \left(5 t^{2}+3\right) & {\left[-20 t \operatorname{cosec}^{2}\left(5 t^{2}+3\right)\right]} \\
6 \tan (3 y+1) & {\left[18 \sec ^{2}(3 y+1)\right]}
\end{array}
$$

